Cadherin-6 Mediates the Heterotypic Interactions between the Hemopoietic Osteoclast Cell Lineage and Stromal Cells in a Murine Model of Osteoclast Differentiation

نویسندگان

  • Gabriel Mbalaviele
  • Riko Nishimura
  • Akira Myoi
  • Maria Niewolna
  • Sakamuri V. Reddy
  • Di Chen
  • Jian Feng
  • David Roodman
  • Gregory R. Mundy
  • Toshiyuki Yoneda
چکیده

Osteoclasts are multinucleated cells of hemopoietic origin that are responsible for bone resorption during physiological bone remodeling and in a variety of bone diseases. Osteoclast development requires direct heterotypic cell-cell interactions of the hemopoietic osteoclast precursors with the neighboring osteoblast/stromal cells. However, the molecular mechanisms underlying these heterotypic interactions are poorly understood. We isolated cadherin-6 isoform, denoted cadherin-6/2 from a cDNA library of human osteoclast-like cells. The isolated cadherin-6/2 is 3,423 bp in size consisting of an open reading frame of 2,115 bp, which encodes 705 amino acids. This isoform lacks 85 amino acids between positions 333 and 418 and contains 9 different amino acids in the extracellular domain compared with the previously described cadherin-6. The human osteoclast-like cells also expressed another isoform denoted cadherin-6/1 together with the cadherin-6. Introduction of cadherin-6/2 into L-cells that showed no cell-cell contact caused evident morphological changes accompanied with tight cell-cell association, indicating the cadherin-6/2 we isolated here is functional. Moreover, expression of dominant-negative or antisense cadherin-6/2 construct in bone marrow-derived mouse stromal ST2 cells, which express only cadherin-6/2, markedly impaired their ability to support osteoclast formation in a mouse coculture model of osteoclastogenesis. Our results suggest that cadherin-6 may be a contributory molecule to the heterotypic interactions between the hemopoietic osteoclast cell lineage and osteoblast/bone marrow stromal cells required for the osteoclast differentiation. Since both osteoclasts and osteoblasts/bone marrow stromal cells are the primary cells controlling physiological bone remodeling, expression of cadherin-6 isoforms in these two cell types of different origin suggests a critical role of these molecules in the relationship of osteoclast precursors and cells of osteoblastic lineage within the bone microenvironment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connection between B lymphocyte and osteoclast differentiation pathways.

Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ...

متن کامل

Molecular Understanding of Osteoclast Differentiation and Physiology

Two types of cells, osteoblasts and osteoclasts, maintain bone homeostasis by balancing each other’s function [1,2]. Osteoblasts, which build bone, are derived from a mesenchymal progenitor cell that can also differentiate into marrow stromal cells and adipocytes [3]. Osteoclasts, originating from hemopoietic progenitors of the monocyte/macrophage lineage, immigrate into bone via the blood stre...

متن کامل

Development of Osteoclasts From Embryonic Stem Cells Through a Pathway

Osteoclasts are hematopoietic cells essential for bone reclasts produced by 75% and more than 99%, respectively. sorption. To study the derivation of these interesting cells, Blockade of signaling through another tyrosine kinase–type we developed a stepwise culture system where stromal cells receptor, c-kit, did not affect any stages of osteoclastogenpromote embryonic stem (ES) cells to differe...

متن کامل

Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent.

Osteoclasts are hematopoietic cells essential for bone resorption. To study the derivation of these interesting cells, we developed a stepwise culture system where stromal cells promote embryonic stem (ES) cells to differentiate into mature osteoclasts. Three phases to this differentiation process include (1) induction of hematopoiesis, along with the generation of osteoclast precursors, (2) ex...

متن کامل

Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells.

Conditionally immortalized murine calvarial (CIMC) cells that support differentiation of precursors into mature osteoclasts were isolated. All six CIMC cell lines supported osteoclast differentiation in response to 1,25-dihydroxyvitamin D(3) or interleukin (IL)-11. CIMC-4 cells also supported osteoclast differentiation in response to tumor necrosis factor (TNF)-alpha, IL-1beta, or IL-6. The res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 141  شماره 

صفحات  -

تاریخ انتشار 1998